3.1935 \(\int \frac{(d+e x)^3}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\)

Optimal. Leaf size=255 \[ \frac{5 \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{7/2} d^{7/2} \sqrt{e}}+\frac{5 \left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^3 d^3}+\frac{5 (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 c^2 d^2}+\frac{(d+e x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d} \]

[Out]

(5*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*c^3*d^3) +
(5*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(12*c^
2*d^2) + ((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c*d) + (5*
(c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]
*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(7/2)*d^(7/2)*Sqrt[e])

_______________________________________________________________________________________

Rubi [A]  time = 0.555011, antiderivative size = 255, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.108 \[ \frac{5 \left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{7/2} d^{7/2} \sqrt{e}}+\frac{5 \left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^3 d^3}+\frac{5 (d+e x) \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 c^2 d^2}+\frac{(d+e x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x)^3/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(5*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*c^3*d^3) +
(5*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(12*c^
2*d^2) + ((d + e*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*c*d) + (5*
(c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]
*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(7/2)*d^(7/2)*Sqrt[e])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 69.6518, size = 241, normalized size = 0.95 \[ \frac{\left (d + e x\right )^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{3 c d} - \frac{5 \left (d + e x\right ) \left (a e^{2} - c d^{2}\right ) \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{12 c^{2} d^{2}} + \frac{5 \left (a e^{2} - c d^{2}\right )^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{8 c^{3} d^{3}} - \frac{5 \left (a e^{2} - c d^{2}\right )^{3} \operatorname{atanh}{\left (\frac{a e^{2} + c d^{2} + 2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{16 c^{\frac{7}{2}} d^{\frac{7}{2}} \sqrt{e}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

(d + e*x)**2*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(3*c*d) - 5*(d + e*x
)*(a*e**2 - c*d**2)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(12*c**2*d**2
) + 5*(a*e**2 - c*d**2)**2*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(8*c**
3*d**3) - 5*(a*e**2 - c*d**2)**3*atanh((a*e**2 + c*d**2 + 2*c*d*e*x)/(2*sqrt(c)*
sqrt(d)*sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))))/(16*c**(7/2)*d*
*(7/2)*sqrt(e))

_______________________________________________________________________________________

Mathematica [A]  time = 0.358973, size = 202, normalized size = 0.79 \[ \frac{\frac{2 (d+e x) (a e+c d x) \left (15 a^2 e^4-10 a c d e^2 (4 d+e x)+c^2 d^2 \left (33 d^2+26 d e x+8 e^2 x^2\right )\right )}{3 c^3 d^3}+\frac{5 \sqrt{d+e x} \left (c d^2-a e^2\right )^3 \sqrt{a e+c d x} \log \left (2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e^2+c d (d+2 e x)\right )}{c^{7/2} d^{7/2} \sqrt{e}}}{16 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[(d + e*x)^3/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

((2*(a*e + c*d*x)*(d + e*x)*(15*a^2*e^4 - 10*a*c*d*e^2*(4*d + e*x) + c^2*d^2*(33
*d^2 + 26*d*e*x + 8*e^2*x^2)))/(3*c^3*d^3) + (5*(c*d^2 - a*e^2)^3*Sqrt[a*e + c*d
*x]*Sqrt[d + e*x]*Log[a*e^2 + 2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d
 + e*x] + c*d*(d + 2*e*x)])/(c^(7/2)*d^(7/2)*Sqrt[e]))/(16*Sqrt[(a*e + c*d*x)*(d
 + e*x)])

_______________________________________________________________________________________

Maple [B]  time = 0.022, size = 513, normalized size = 2. \[{\frac{5\,{d}^{3}}{16}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{{e}^{2}{x}^{2}}{3\,cd}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{5\,a{e}^{3}x}{12\,{c}^{2}{d}^{2}}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{13\,ex}{12\,c}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{5\,{a}^{2}{e}^{4}}{8\,{c}^{3}{d}^{3}}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{5\,a{e}^{2}}{3\,{c}^{2}d}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{11\,d}{8\,c}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{5\,{a}^{3}{e}^{6}}{16\,{c}^{3}{d}^{3}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{15\,{a}^{2}{e}^{4}}{16\,{c}^{2}d}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-{\frac{15\,ad{e}^{2}}{16\,c}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^3/(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

5/16*d^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+1/3*e^2*x^2/d/c*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2)-5/12*e^3/d^2/c^2*x*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a+13/12*e/c*x*
(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+5/8*e^4/d^3/c^3*(a*e*d+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)*a^2-5/3*e^2/d/c^2*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a+11/8
*d/c*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-5/16*e^6/d^3/c^3*ln((1/2*a*e^2+1/2*
c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1
/2)*a^3+15/16*e^4/d/c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a
*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2-15/16*e^2*d/c*ln((1/2*a*e^2+1/
2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^
(1/2)*a

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.283271, size = 1, normalized size = 0. \[ \left [\frac{4 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} + 33 \, c^{2} d^{4} - 40 \, a c d^{2} e^{2} + 15 \, a^{2} e^{4} + 2 \,{\left (13 \, c^{2} d^{3} e - 5 \, a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d e} + 15 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left (4 \,{\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e}\right )}{96 \, \sqrt{c d e} c^{3} d^{3}}, \frac{2 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} + 33 \, c^{2} d^{4} - 40 \, a c d^{2} e^{2} + 15 \, a^{2} e^{4} + 2 \,{\left (13 \, c^{2} d^{3} e - 5 \, a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-c d e} + 15 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \arctan \left (\frac{{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d e}\right )}{48 \, \sqrt{-c d e} c^{3} d^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="fricas")

[Out]

[1/96*(4*(8*c^2*d^2*e^2*x^2 + 33*c^2*d^4 - 40*a*c*d^2*e^2 + 15*a^2*e^4 + 2*(13*c
^2*d^3*e - 5*a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*
e) + 15*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*log(4*(2*c^2*d^2
*e^2*x + c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) + (8
*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)
*x)*sqrt(c*d*e)))/(sqrt(c*d*e)*c^3*d^3), 1/48*(2*(8*c^2*d^2*e^2*x^2 + 33*c^2*d^4
 - 40*a*c*d^2*e^2 + 15*a^2*e^4 + 2*(13*c^2*d^3*e - 5*a*c*d*e^3)*x)*sqrt(c*d*e*x^
2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*e) + 15*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*
a^2*c*d^2*e^4 - a^3*e^6)*arctan(1/2*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(sq
rt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*c*d*e)))/(sqrt(-c*d*e)*c^3*d^3)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (d + e x\right )^{3}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral((d + e*x)**3/sqrt((d + e*x)*(a*e + c*d*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.287808, size = 316, normalized size = 1.24 \[ \frac{1}{24} \, \sqrt{c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, x{\left (\frac{4 \, x e^{2}}{c d} + \frac{{\left (13 \, c^{2} d^{3} e^{3} - 5 \, a c d e^{5}\right )} e^{\left (-2\right )}}{c^{3} d^{3}}\right )} + \frac{{\left (33 \, c^{2} d^{4} e^{2} - 40 \, a c d^{2} e^{4} + 15 \, a^{2} e^{6}\right )} e^{\left (-2\right )}}{c^{3} d^{3}}\right )} - \frac{5 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{c d} e^{\left (-\frac{1}{2}\right )}{\rm ln}\left ({\left | -\sqrt{c d} c d^{2} e^{\frac{1}{2}} - 2 \,{\left (\sqrt{c d} x e^{\frac{1}{2}} - \sqrt{c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x}\right )} c d e - \sqrt{c d} a e^{\frac{5}{2}} \right |}\right )}{16 \, c^{4} d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)*(2*x*(4*x*e^2/(c*d) + (13*c^2*d
^3*e^3 - 5*a*c*d*e^5)*e^(-2)/(c^3*d^3)) + (33*c^2*d^4*e^2 - 40*a*c*d^2*e^4 + 15*
a^2*e^6)*e^(-2)/(c^3*d^3)) - 5/16*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 -
 a^3*e^6)*sqrt(c*d)*e^(-1/2)*ln(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^
(1/2) - sqrt(c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x))*c*d*e - sqrt(c*d)*a*e^(5/2)
))/(c^4*d^4)